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Abstract. We have investigated the algebraic structure of the Fokker-Planck equation with a variable
diffusion coefficient and a time-dependent mean-reverting force. Such a model could be useful to study the
general problem of a Brownian walker with a space-dependent diffusion coefficient. We also show that this
model is related to the Fokker-Planck equation with a constant diffusion coefficient and a time-dependent
anharmonic potential of the form V (x, t) = 1

2
a(t)x2 + b ln x, which has been widely applied to model

different physical and biological phenomena, e.g. the study of neuron models and stochastic resonance
in monostable nonlinear oscillators. Using the Lie algebraic approach we have derived the exact diffusion
propagators for the Fokker-Planck equations associated with different boundary conditions, namely (i)
the case of a single absorbing barrier, and (ii) the case of two absorbing barriers. These exact diffusion
propagators enable us to study the time evolution of the corresponding stochastic systems.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
02.50.Ey Stochastic processes – 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.)

The Fokker-Planck equation (FPE) in one dimension:

∂P (x, t)
∂t

=
∂

∂x
[A(x, t)P (x, t)] +

∂2

∂x2
[B(x, t)P (x, t)] ,

(1)

which occupies a classic place in the field of “Brownian
motion and fluctuations”, is widely used as a tool for
modelling various stochastic processes in many areas of
physics, chemistry, biology, engineering and finance [1–3].
As is well known, while the stationary solution of the FPE
can be given in closed form (at least up to quadratures)
if the condition of detailed balance holds, the study of its
time-dependent solution is, however, a much more com-
plicated problem. In fact, exactly solvable FPE with an
external time-dependent potential are extremely rare. In
this communication we apply the Lie algebraic method to
derive the propagator of the FPE:

∂P (x, t)
∂t

=
{
Bx

∂2

∂x2
+ [C(t)x+D]

∂

∂x
+ C(t)

}
P (x, t),

(2)

and investigate the time evolution of the solution. Here
x ≥ 0, B > 0, and C(t) > 0. This equation represents
the well-known “square-root” model of option pricing with
time-dependent parameters in the field of finance [4]. In
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this model we have a variable diffusion coefficient and a
time-dependent mean-reverting force. Such a model can be
useful to study the problem of a Brownian walker with a
linearly space-dependent diffusion coefficient, which could
be realized experimentally by trapping particles between
two nearly parallel walls [5]. Introducing a simple change
of variables: y =

√
x, equation (2) can be recast in the

following form:

∂u(y, t)
∂t

=
{

1
4
B
∂2

∂y2
+

1
2

[
C(t)y +

2D + 3B
2y

]
∂

∂y

+
1
2
C(t)−2D + 3B

4y2

}
u(y, t)≡H(t)u(y, t), (3)

where u(y, t) = yP (x, t). This FPE represents a general-
ization of the well-known Rayleigh process, which involves
a constant diffusion coefficient and a time-dependent an-
harmonic oscillator potential V (y, t) = 1

4 [C(t)y2 + (2D +
3B) ln y] [2]. This particular choice of potential can be
used to model the behaviour of several physical and biolog-
ical systems, e.g. the study of neuron models [6], stochas-
tic resonance in monostable nonlinear oscillators [7] and
its possible application to spatially extended systems [8].
Furthermore, the knowledge of the exact propagator of
the model Fokker-Planck equation can be useful as a
benchmark to test approximate numerical or analytical
procedures.
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To begin with, we rewrite the operator H(t) in terms
of the su(1,1) generators as follows [9]:

H(t) = J+ − C(t)J0 −
D +B

2B
C(t), (4)

where

J+ =
1
4
B
∂2

∂y2
+

2D + 3B
4y

∂

∂y
− 2D + 3B

4y2

J− =
1
B
y2 , J0 = −1

2

(
y
∂

∂y
+

1
2

+
2D + 3B

2B

)
· (5)

The operators J+, J0 and J− form the Lie algebra su(1,1):

[J+, J−] = −2J0 , [J0, J±] = ±J±. (6)

One may define the evolution operator U(t, 0) such that

u(y, t) = U(t, 0)u(y, 0). (7)

Inserting equation (7) into equation (3) yields the evolu-
tion equation

H(t)U(t, 0) =
∂

∂t
U(t, 0) , U(0, 0) = 1. (8)

Assuming that U(t, 0) takes the form:

U(t, 0) = UI(t, 0) exp
[
−B +D

2B

∫ t

0

C(τ) dτ
]
, (9)

the evolution equation in equation (8) is reduced to

HI(t)UI(t, 0) =
∂

∂t
UI(t, 0) , UI(0, 0) = 1, (10)

with HI(t) being defined by

HI(t) = J+ − C(t)J0. (11)

Since the su(1,1) algebra is a real “split three-dimensional”
simple Lie algebra, the Wei-Norman theorem states that
the evolution UI(t, 0) can be expressed in the following
form [10]:

UI(t, 0) = exp [c3(t)J−] exp [c2(t)J0] exp [c1(t)J+] (12)

where ci(t) are to be determined. Then by direct differen-
tiation with respect to time, we obtain

∂

∂t
UI(t, 0) = [h+(t)J+ + h0(t)J0 + h−(t)J−]UI(t, 0)

(13)

with

h+(t) = exp(c2)
dc1
dt
,

h0(t) =
dc2
dt

+ 2c3 exp(c2)
dc1
dt
,

h−(t) =
dc3
dt

+ c3
dc2
dt

+ c23 exp(c2)
dc1
dt
· (14)

Substituting equations (11, 12) and (13) into equa-
tion (10), and comparing the two sides, we obtain after
simplification

dc3(t)
dt

= c23(t) + C(t)c3(t) , c3(0) = 0, (15)

c2(t) = −
∫ t

0

[2c3(τ) + C(τ)] dτ, (16)

c1(t) =
∫ t

0

exp [−c2(τ)] dτ. (17)

Equation (15), which is just a Bernoulli equation, is the
equation we have to solve first to determine c3(t), and ob-
viously the only admissible solution is the trivial solution
c3(t) = 0. Once c3(t) is determined, c1(t) and c2(t) can be
obtained readily by direct integration:

c2(t) = −
∫ t

0

C(τ) dτ ,

c1(t) =
∫ t

0

exp [−c2(τ)] dτ. (18)

Hence, we have obtained an exact form of the time evolu-
tion operator U(t, 0) of the FPE in equation (3):

U(t, 0) = exp
[
−c2(t)

2

]
exp

[
−c2(t)

2
y
∂

∂y

]
exp [c1(t)J+] .

(19)

Without loss of generality, we suppose that u(y, 0) =
y(α+1)/2v(y, 0), where α = −(2D + 3B)/B and v(y, 0) is
defined in terms of the Fourier-Bessel integral:

v(y, 0) =
∫ ∞

0

dν νJ(α−1)/2(yν)

×
∫ ∞

0

dy′ y′J(α−1)/2(y′ν)v(y′, 0), (20)

for α > 01. Then it is not difficult to show that u(y, t) is
given by

u(y, t) =
∫ ∞

0

dy′K(y, t; y′, 0) u(y′, 0) (21)

1 Such an expansion of v(y, 0) is valid at every continuity
point of v(y, 0) provided that:

1. The function v(y, 0), defined in the semi-infinite interval
(0,∞), is piecewise continuous and of bounded variation in
every finite subinterval [y1, y2], where 0 < y1 < y2 <∞;

2. The integral Z ∞
0

√
y |v(y, 0)|dy

is finite.

See, for example, the book “Special Functions & Their Ap-
plications” by N.N. Lebedev (Dover Publications Inc., N.Y.,
1972).
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with

K(y, t; y′, 0) =
{
y′1−αy1+α exp

[
−α+ 3

2
c2(t)

]}1/2

×
∫ ∞

0

dν ν exp
[
− B c1(t)

4
ν2

]
J(α−1)/2 (y′ν)

× J(α−1)/2 (y ν exp[−c2(t)/2]) . (22)

The function Jµ is the Bessel function of the first kind
of order µ. Here we have made use of the fact that
y(α+1)/2J(α−1)/2(yν) is an eigenfunction of the operator
J+ with the eigenvalue −Bν2/4, as well as the well-known
relation

exp
(
ηy

∂

∂y

)
f(y) = f (y exp(η)) . (23)

The integral over ν can be evaluated to give [11]

2
B c1(t)

exp
{
− y′2 + y2 exp[− c2(t)]

B c1(t)

}
× I(α−1)/2

(
2 y′ y exp[−c2(t)/2]

B c1(t)

)
(24)

for (α − 1)/2 > −1, y′ > 0 and y exp[−c2(t)/2] > 0. The
function Iµ is the modified Bessel function of the first
kind of order µ. The desired propagator K(y, t; y′, 0) is
thus found to be

K(y, t; y′, 0) =
2

Bc1(t)

{
y′1−αy1+α exp

[
−α+ 3

2
c2(t)

]}
1/2

× exp
{
−y
′2 + y2 exp[−c2(t)]

Bc1(t)

}
×I(α−1)/2

(
2y′y exp(−c2(t)/2)

Bc1(t)

)
· (25)

Consequently, assuming that u(y, 0) = δ(y− y0), the time
evolution of the random particle is described by the prop-
agator K(y, t; y0, 0). To calculate the total probability of
finding the random particle within the interval [0,∞) at
any time t > 0, we simply need to evaluate the integral:∫ ∞

0

dy K(y, t; y0, 0) =

2
Bc1(t)

{
y′1−α exp

[
−α+ 3

2
c2(t)

]}1/2

exp
(
− y′2

Bc1(t)

)
×
∫ ∞

0

dy y(1+α)/2 exp
{
−y

2 exp[−c2(t)]
Bc1(t)

}
× I(α−1)/2

(
2y′y exp(−c2(t)/2)

Bc1(t)

)
· (26)

For (α − 1)/2 > −1, y′ > 0, the integral over y on the
right-hand side yields [11]{

2
Bc1(t)

{
y′1−α exp

[
−α+3

2
c2(t)

]}
1/2exp

(
− y′2

Bc1(t)

)}−1

·

(27)

Hence, the total probability of finding the random particle
within the interval [0,∞) is always conserved, i.e.∫ ∞

0

dy K(y, t; y0, 0) = 1. (28)

Finally, it is not difficult to show that the solution of the
FPE in equation (2) is given by

P (x, t) =
∫ ∞

0

dx′G(x, t;x′, 0) P (x′, 0) (29)

with

G(x, t;x′, 0) =

1
Bc1(t)

{( x
x′

)(α−1)/2

exp
[
−α+ 3

2
c2(t)

]}1/2

× exp
{
−x
′ + x exp[−c2(t)]

Bc1(t)

}
× I(α−1)/2

(
2
√
x′ x exp(−c2(t)/2)

Bc1(t)

)
· (30)

Beyond question, the total probability of finding the Brow-
nian walker with a space-dependent diffusion coefficient
within the interval [0,∞) is always conserved too.

Furthermore, we can generalize the solution given in
equations (21, 22) to the case which has a moving barrier
at y > 0 in addition to the fixed barrier at y = 0 as follows:

u(y, t) =
∫ L

0

dy′K(y, t; y′, 0) u(y′, 0) (31)

with

K(y, t; y′, 0) =
∞∑
n=1

2y′

L2J2
ω+1(xωn)

{
y

y′
exp

[
−c2(t)

2

]}ω+1

×Jω
(
xωn
L
y exp

[
−c2(t)

2

])
Jω

(xωn
L
y′
)

× exp
[
−Bc1(t)

4L2
x2
ωn

]
. (32)

for ω ≡ (α − 1)/2 > −1. Here xωn denotes the nth
zero of the Bessel function Jω, and L is the position of
the moving barrier at t = 0. It is not difficult to show
that at t ≥ 0 the kernel K(y, t; y′, 0) will disappear at
y = L exp [c2(t)/2] . That is, the moving barrier is moving
along the trajectory y∗(t) = L exp [c2(t)/2]. Accordingly,
the corresponding solution of the FPE in equation (2), is
simply given by

P (x, t) =
∫ √L

0

dx′G(x, t;x′, 0) P (
√
x′, 0) (33)
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where the propagator G(x, t;x′, 0) is defined as

G(x, t;x′, 0) =
1

2
√
x
K(
√
x, t;
√
x′, 0). (34)

It should be noted that such a system is bounded by two
barriers, namely a fixed barrier at x = 0 and a moving bar-
rier along the trajectory x∗(t) = L2 exp [c2(t)], and hence
it could be useful for the general problem of a Brownian
walker with a space-dependent diffusion coefficient, which
is trapped between two parallel plates.

In summary, we have investigated the algebraic struc-
ture of the Fokker-Planck equation with a variable dif-
fusion coefficient and a time-dependent mean-reverting
force. Such a model could be useful to study the gen-
eral problem of a Brownian walker with a linearly space-
dependent diffusion coefficient. We also show that this
model is related to the Fokker-Planck equation with a
constant diffusion coefficient and a time-dependent an-
harmonic potential of the form V (x, t) = 1

2a(t)x2 + b lnx,
which has been widely applied to model different phys-
ical and biological phenomena, e.g. the study of neuron
models and stochastic resonance in monostable nonlinear
oscillators. Using the Lie algebraic approach we have de-
rived the exact diffusion propagators for these two types
of Fokker-Planck equations. These exact diffusion prop-
agators not only enable us to study the time evolution
of the corresponding stochastic systems, but the knowl-
edge of these exact propagators can also be useful as
a benchmark to test approximate numerical or analyti-
cal procedures. Furthermore, the Lie algebraic method is
very simple and could be easily extended to the more gen-
eral Fokker-Planck equations with well-defined algebraic
structures.
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